Something interesting about C4H14Cl2N2S2

Recommanded Product: 2,2′-Disulfanediyldiethanamine dihydrochloride. Welcome to talk about 56-17-7, If you have any questions, you can contact Wang, XF; Ren, J; He, HQ; Liang, L; Xie, X; Li, ZX; Zhao, JG; Yu, JM or send Email.

In 2019.0 PHARM DEV TECHNOL published article about POLYMERIC MICELLES; INTRACELLULAR DELIVERY; MULTIDRUG-RESISTANCE; BLOCK-COPOLYMERS; BREAST-CANCER; DRUG; CORE; PLGA; RELEASE; NANOCARRIERS in [Wang, Xu-Feng; Ren, Jin; He, Hai-Qing; Li, Zi-Xin; Zhao, Jian-Guo; Yu, Jing-Mou] Jiujiang Univ, Sch Pharm & Life Sci, 320 Xunyang East Rd, Jiujiang 332000, Peoples R China; [Liang, Liang] Jiujiang Univ, Analyt & Testing Ctr, Jiujiang, Peoples R China; [Xie, Xin] Jiujiang Univ, Coll Basic Med Sci, Jiujiang, Peoples R China in 2019.0, Cited 47.0. The Name is 2,2′-Disulfanediyldiethanamine dihydrochloride. Through research, I have a further understanding and discovery of 56-17-7. Recommanded Product: 2,2′-Disulfanediyldiethanamine dihydrochloride

In this study, reduction-sensitive self-assembled polymer nanoparticles based on poly (lactic-co-glycolic acid) (PLGA) and chondroitin sulfate A (CSA) were developed and characterized. PLGA was conjugated with CSA via a disulfide linkage (PLGA-ss-CSA). The critical micelle concentration (CMC) of PLGA-ss-CSA conjugate is 3.5 mu g/mL. The anticancer drug doxorubicin (DOX) was chosen as a model drug, and was effectively encapsulated into the nanoparticles (PLGA-ss-CSA/DOX) with high loading efficiency of 15.1%. The cumulative release of DOX from reduction-sensitive nanoparticles was only 34.8% over 96h in phosphate buffered saline (PBS, pH 7.4). However, in the presence of 20mM glutathione-containing PBS environment, DOX release was notably accelerated and almost complete from the reduction-sensitive nanoparticles up to 96h. Moreover, efficient intracellular DOX release of PLGA-ss-CSA/DOX nanoparticles was confirmed by CLSM assay in A549 cells. In vitro cytotoxicity study showed that the half inhibitory concentrations of PLGA-ss-CSA/DOX nanoparticles and free DOX against A549 cells were 1.141 and 1.825 mu g/mL, respectively. Therefore, PLGA-ss-CSA/DOX nanoparticles enhanced the cytotoxicity of DOX in vitro. These results suggested that PLGA-ss-CSA nanoparticles could be a promising carrier for drug delivery.

Recommanded Product: 2,2′-Disulfanediyldiethanamine dihydrochloride. Welcome to talk about 56-17-7, If you have any questions, you can contact Wang, XF; Ren, J; He, HQ; Liang, L; Xie, X; Li, ZX; Zhao, JG; Yu, JM or send Email.

Reference:
Thiazine – an overview | ScienceDirect Topics,
,Thiazine | C4H5NS – PubChem