I found the field of Polymer Science very interesting. Saw the article Self-Healing Solid Polymer Electrolyte Facilitated by a Dynamic Cross-Linked Polymer Matrix for Lithium-Ion Batteries published in 2020.0. Quality Control of 2,2′-Disulfanediyldiethanamine dihydrochloride, Reprint Addresses Xue, ZG (corresponding author), Huazhong Univ Sci & Technol, Sch Chem & Chem Engn, Key Lab Mat Chem Energy Convers & Storage, Minist Educ, Wuhan 430074, Peoples R China.. The CAS is 56-17-7. Through research, I have a further understanding and discovery of 2,2′-Disulfanediyldiethanamine dihydrochloride
Compared with liquid electrolytes, the solid polymer electrolyte (SPE), which possesses improved thermal and mechanical stability, is believed the broadest potential application for satisfying the safety needs of advanced electro-chemical devices. However, some breakable SPEs could lead to catastrophic failure of batteries that triggered by a short circuit. In the present contribution, a new class of SPE containing disulfide bonds and urea groups is reported. The hydrogen bonding between the urea groups and disulfide metathesis reaction endows the SPE with a high level of self-healing without external stimuli at room temperature as well as ultrafast self-healing at elevated temperatures. The completely healed SPE with extreme damage shows a high self-healing efficiency and no changes in the ionic conductivity and cycling performance of the solid-state lithium-metal/LiFePO4 cell compared to the pristine one.
Quality Control of 2,2′-Disulfanediyldiethanamine dihydrochloride. Bye, fridends, I hope you can learn more about C4H14Cl2N2S2, If you have any questions, you can browse other blog as well. See you lster.
Reference:
Thiazine – an overview | ScienceDirect Topics,
,Thiazine | C4H5NS – PubChem