Quality Control of 2,2′-Disulfanediyldiethanamine dihydrochloride. In 2019.0 ACS BIOMATER SCI ENG published article about MESOPOROUS SILICA NANOPARTICLES; UP-CONVERSION NANOPARTICLES; SYNERGISTIC THERAPY; DELIVERY; PLATFORM; CANCER; NANOPLATFORM; SYSTEMS; PH in [Zhou, Shuai; Ding, Chendi; Wang, Yang; Fu, Jiajun] Nanjing Univ Sci & Technol, Sch Chem Engn, Nanjing 210094, Jiangsu, Peoples R China; [Jiang, Wei] Nanjing Univ Sci & Technol, Natl Special Superfine Powder Engn Res Ctr, Nanjing 210094, Jiangsu, Peoples R China; [Fu, Jiajun] Nanjing Univ, State Key Lab Coordinat Chem, Nanjing 210093, Jiangsu, Peoples R China in 2019.0, Cited 52.0. The Name is 2,2′-Disulfanediyldiethanamine dihydrochloride. Through research, I have a further understanding and discovery of 56-17-7.
Integrating multimodality bioimaging and multiple stimuli-responsive controlled drug release properties into one single nanosystem for therapeutic application is highly desirable but still remains a challenge. Herein, we coated a hollow mesoporous silica shell on to upconversion nanoparticles (UCNPs) and conjugated pillarene-based supramolecular valves on to surface of UCNPs@hm-SiO2 using amine-coumarin phototriggers to obtain the multifunctional nanoparticles, UCNPs@hm-SiO2-Cou-Cys-DOX/WP[5]. Benefiting from the core shell structured UCNPs, the UCNPs@hm-SiO2-Cou-Cys-DOX/WP[5] can serve as efficient contrast agents for upconversion luminescence and T-1-weighted magnetic resonance imaging in vitro/in vivo. More importantly, depending on exquisitely designed supramolecular valves, UCNPs@hm-SiO2-Cou-Cys-DOX/WP[5] can realize zero-premature release under normal physiological conditions (pH 7.4), which produces minimal damage to normal tissue, whereas this nanosystem can respond to several disease-related signals, including acid (most cancers), alkali (metabolic alkalosis), and Zn2+ (Alzheimer’s disease), along with two external stimuli, including near-infrared (NIR) light and reductive electrical potential, via altering the spatial structure of pseudorotaxanes, disassembling the molecular stalks, or undergoing photochemical reactions, ultimately resulting in opening of the gatekeepers and release of encapsulated drugs. The multifunctional UCNP-based nanoparticles were endowed with such quintuple stimuli-responsive controlled release characteristics. Specifically, in anticancer application, the rational utilization of the two of them, acid and NIR light, could regulate the release amount and rate of DOX from UCNPs@hm-SiO2-Cou-Cys-DOX/WP[S], accelerate the accumulation of DOX in cell nuclei, and thereby promote the cancer cell apoptosis, indicating that the nanomaterials have promising application in cancer treatment. This study provides a novel design strategy for constructing multifunctional UCNP-based nanoparticles with multiple stimuli-responsive drug release features, which have great potential in diagnosis and therapy of relevant diseases as theranostic nanomedicines.
Quality Control of 2,2′-Disulfanediyldiethanamine dihydrochloride. Bye, fridends, I hope you can learn more about C4H14Cl2N2S2, If you have any questions, you can browse other blog as well. See you lster.
Reference:
Thiazine – an overview | ScienceDirect Topics,
,Thiazine | C4H5NS – PubChem