An article Dual-responsive carboxymethyl cellulose/dopamine/cystamine hydrogels driven by dynamic metal-ligand and redox linkages for controllable release of agrochemical WOS:000596863400008 published article about PH; POLYMERS; YIELD; FILMS in [Guo, Tianyu; Wang, Wangxia; Song, Junlong; Jin, Yongcan] Nanjing Forestry Univ, Jiangsu Coinnovat Ctr Efficient Proc & Utilizat F, Nanjing 210037, Peoples R China; [Wang, Wangxia] Yancheng Inst Technol, Sch Chem & Chem Engn, Yancheng 224001, Peoples R China; [Guo, Tianyu; Wang, Wangxia; Xiao, Huining] Univ New Brunswick, Dept Chem Engn, Fredericton, NB E3B 5A3, Canada in 2021.0, Cited 46.0. Category: thiazines. The Name is 2,2′-Disulfanediyldiethanamine dihydrochloride. Through research, I have a further understanding and discovery of 56-17-7
The utilization of agrochemicals in crop production is often inefficient due to lack of appropriate carriers, raising in the significant concerns of ecological environment and public health. To enhance the efficiency of agrochemical delivery, a novel cellulose-based hydrogel was constructed in this work by cross-linking dopamine (DA)-modified carboxymethyl cellulose (CMC) with cystamine (CYS) in the presence of Fe3+ ions. The hydrogels displayed reversible sol-gel transitions upon exposure to stimulation of changes in pH and redox, leading to the controllable release of model agrochemical (6-benzyladenine). Compared with single-triggered condition, the hydrogel doubled the cumulative release when co-triggered by pH and redox. The dynamic metal/catechol complexation and disulfide bonding coexist in the hydrogel networks, enabling occurrence of dynamic reaction under a variety of environmental conditions. The finite element method (FEM) was employed to simulate the hydrogel to provide a theoretical insight into the tested drug delivery. Benefitting from the reversibly cross linked networks and the excellent biodegradability of the hydrogels, we anticipate that this dual-responsive, polysaccharide-based hydrogel will offer diverse applications to reach the full potential in sustainable advancement of crop production.
Category: thiazines. About 2,2′-Disulfanediyldiethanamine dihydrochloride, If you have any questions, you can contact Guo, TY; Wang, WX; Song, JL; Jin, YC; Xiao, HN or concate me.
Reference:
Thiazine – an overview | ScienceDirect Topics,
,Thiazine | C4H5NS – PubChem