Electric Literature of 5872-08-2, The transformation of simple hydrocarbons into more complex and valuable products via catalytic C¨CH bond functionalisation has revolutionised modern synthetic chemistry. 5872-08-2, Name is (7,7-Dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl)methanesulfonic acid, SMILES is CC1(C)C2CCC1(CS(O)(=O)=O)C(=O)C2, belongs to thiazines compound. In a article, author is Fodor, Kinga Judit, introduce new discover of the category.
Synthesis, Structural Elucidation, Cyclic Voltammetry, and Theoretical Modelling of 2-Ferrocenyl-4H-benzo[e][1,3]thiazines and 2-Aryl-4H-ferroceno[e][1,3]thiazines
2-Ferrocenyl-4H-benzo[e][1,3]thiazine and its 6,7-dimethoxy derivative were prepared by a Bischler-Napieralski-type annulation of the Mannich adducts of ferrocenecarboxamide, formaldehyde, and the corresponding thiophenol. A more efficient synthetic pathway, comprising a directed lithiation/iodination sequence followed by standard functional-group transformations and a final copper-catalyzed cyclization, was elaborated to convert [(dimethylamino)methyl]ferrocene into racemic mixtures of the first representatives of planar-chiral 4H-ferroceno[e][1,3]thiazines. A similar strategy with 2-iodobenzyl bromide as the precursor enabled a highly improved synthesis of 2-ferrocenyl-4H-benzo[e][1,3]thiazine. The relative tendency of the new ferrocene-based thiazines, composed of potential redox sites assembled in different molecular architectures, to behave as donors in single-electron transfer (SET) reactions was studied by cyclic voltammetry (CV) and DFT calculations. The results disclosed that 2-ferrocenyl-4H-ferroceno[e][1,3]thiazine can undergo two consecutive redox steps and is the most efficient reductant among the prepared models; it has the lowest first half-cell potential, the highest-energy highest occupied molecular orbital (HOMO) concentrated on the fused metallocene unit and the lowest first ionization energy.
Electric Literature of 5872-08-2, Each elementary reaction can be described in terms of its molecularity, the number of molecules that collide in that step. The slowest step in a reaction mechanism is the rate-determining step.you can also check out more blogs about 5872-08-2.
Reference:
Thiazine – an overview | ScienceDirect Topics,
,Thiazine | C4H5NS – PubChem