Sources of common compounds: 3-Bromo-10H-phenothiazine

According to the analysis of related databases, 3939-23-9, the application of this compound in the production field has become more and more popular.

Adding a certain compound to certain chemical reactions, such as: 3939-23-9,3-Bromo-10H-phenothiazine, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 3939-23-9,3939-23-9

Compound 1 was synthesized by the modification of the published method [18]. Sodium hydride(2.2 g, 53.9 mmol) was stirred with 3-bromo-10H-phenothiazine (10.0 g, 35.9 mmol, dissolved in dryDMF) for 30 min. Bromoethane (4.7 g, 43.1 mmol) was then added to the mixture and stirred for 10 hat room temperature in dark environment. After the reaction completed, water was added to react theremaining sodium hydride. White solid was precipitated and collected by vacuum filtration. The solidwas first washed with small amount of EA and then washed with n-hexane. 1H NMR (400 MHz,acetone-d6) 7.34 (dd, J = 8.7, 2.3 Hz, 1H), 7.28 (d, J = 2.3 Hz, 1H), 7.25-7.19 (m, 1H), 7.15 (dd, J = 7.6,1.5 Hz, 1H), 7.04 (dd, J = 8.3, 1.2 Hz, 1H), 6.99 (d, J = 1.2 Hz, 0H), 6.97 (s, 1H), 6.95 (s, 1H), 3.99 (q,J = 6.9 Hz, 2H), 1.38 (t, J = 6.9 Hz, 3H)., 3939-23-9

According to the analysis of related databases, 3939-23-9, the application of this compound in the production field has become more and more popular.

Reference£º
Article; Lao, Hio Kuan; Tan, Jingyun; Wang, Chunfei; Zhang, Xuanjun; Molecules; vol. 24; 19; (2019);,
Thiazine – an overview | ScienceDirect Topics
Thiazine | C4H5NS – PubChem